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Abstract
We consider a µ-deformation of the Segal–Bargmann transform, which is a
unitary map from a µ-deformed ground state representation onto a µ-deformed
Segal–Bargmann space. We study the µ-deformed Segal–Bargmann transform
as an operator between Lp spaces and then we obtain sufficient conditions on
the Lebesgue indices for this operator to be bounded. A family of Hirschman
inequalities involving the Shannon entropies of a function and of its µ-deformed
Segal–Bargmann transform are proved. We also prove a parametrized family of
log-Sobolev inequalities, in which a new quantity that we call ‘dilation energy’
appears. This quantity generalizes the ‘energy term’ that has appeared in a
previous work.

PACS number: 03.65.−w
Mathematics Subject Classification: 81Qxx

1. Introduction

The Segal–Bargmann spaceB2 is the Hilbert space of holomorphic functions f : C → C which
are square integrable with respect to a Gaussian measure dνGauss. As one thinks of the Hilbert
space L2(R, dx) as a quantum configuration space, one thinks of B2 as a quantum phase space,
since the spaces R and C are the configuration space R and phase space T ∗

R = R
2 ∼= C for a

classical particle with one degree of freedom. In each of the quantum spaces L2(R, dx) and
B2 one has unbounded operators a∗ (creation) and a (annihilation), which satisfy the relation
[a, a∗] = I , called the canonical commutation relation (CCR), and both Hilbert spaces carry
irreducible representations of the Lie group generated by the exponentiated form of the CCR.
The Stone–von Neumann theorem says that in such a case there exists an essentially unique
unitary operator B̃ : L2(R, dx) → B2 that intertwines the action of the corresponding creation
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and annihilation operators. This isomorphism B̃ is the Bargmann transform, and Segal–
Bargmann analysis has to do mainly with the study of the operators related to the transform B̃

and spaces of holomorphic functions related to B2. (The beginnings of this theory date back
to the works of Segal [Seg1], [Seg2] and Bargmann [Bar].) When the quantum configuration
space is replaced by another unitarily equivalent Hilbert space L2(R, dg), called the ground
state representation (in which dg is another Gaussian measure), the resulting transform B
that maps the ground state representation unitarily onto the Segal–Bargmann space is called
the Segal–Bargmann transform, and this is the operator that will be of interest for us in this
work. In terms of the operators a∗ and a one can define the operators P (momentum) and Q
(position), which are unbounded self-adjoint operators that satisfy the commutation relation
[P,Q] = −iI , which is implied by the CCR. If H = 2−1(Q2 + P 2) is the Hamiltonian
of the harmonic oscillator, one has also that the operators P and Q satisfy the equations of
motion i[P,H ] = Q and i[Q,H ] = −P . In 1950, Wigner [Wig] proved that the converse
implication is false by exhibiting a family of unbounded operators, labelled by a parameter
µ > −1/2, that satisfy the equations of motion but do not satisfy the CCR. Rosenblum and
Marron described explicitly (in [Ros1], [Ros2] and [Marr]) a µ-quantum configuration space
L2(R, |x|2µ dx), a µ-Segal–Bargmann space B2

µ, and a µ-Bargmann transform Bµ which is a
unitary onto transformation mapping the former Hilbert space to the latter Hilbert space. This
theory can be understood as a µ-deformation of standard Segal–Bargmann analysis with the
property that if one sets µ = 0 the standard theory is recovered (see [Snt3]).

The Segal–Bargmann transform B shares with the Fourier transform F the fact of being
a unitary operator between L2 spaces. This is one of the original motivations in [Snt1] for
studying B by using F as a model. For example, the Fourier transform can be studied as an
operator acting on Lp spaces, by looking for pairs of Lebesgue indices p and q for which
F : Lp(R, dx) → Lq(R, dx) is a bounded operator. The Hausdorff–Young inequality tells us
that for p ∈ [1, 2] and q = p′ (the conjugate index of p), the operator F is bounded and that
‖Ff ‖Lq(R,dx) � ‖f ‖Lp(R,dx). In [Snt1] it is proved that for 1 � q < 2 and p > 1 + q/2, the
Segal–Bargmann transform B is a bounded operator from Lp(R, dg) to Lq(C, dνGauss). By
using the Riesz–Thorin interpolation theorem it is also proved that if p and q are as before,
then one has the estimate ‖Bf ‖Lq(s)(C,dνGauss) � Cs‖f ‖Lp(s)(R,dg), where ((p(s))−1, (q(s))−1) is
a point in the segment connecting (1/2, 1/2) and (p−1, q−1). Observe that this result is in
fact a family a Hausdorff–Young type inequalities (with B replacing F). In [Hir], Hirschman
proved the inequality SL2(R,dx)(f ) + SL2(R,dx)(Ff ) � 0, where SL2(R,dx)(ϕ) is the entropy
(defined in the next section) of the function ϕ ∈ L2(R, dx). Following [Hir], in [Snt1] the
second author proved the ‘Hirschman inequality’

C1SL2(R,dg)(f ) � C2SL2(C,dνGauss)(Bf ) + C3‖f ‖2
L2(R,dg). (1.1)

The importance of this inequality is that it constrains the values of the entropy of a
function and of its Segal–Bargmann transform. That is, even though the operator B does not
preserve entropy (also proved in [Snt1]), the inequality above shows that the two entropies
cannot have arbitrary values. At this point we mention that from the point of view of the
Hilbert space structure, the ground state representation L2(R, dg) is indistinguishable from
the Segal–Bargmann space B2, since B is a Hilbert space isomorphism. In the case of the
Fourier transform, the famous Heisenberg uncertainty principle tells us that the variance of
a function f and the variance of its Fourier transform Ff are quantities that cannot vary
arbitrarily. Thus, the inequality (1.1) can be understood as a kind of uncertainty principle
for Segal–Bargmann analysis. The rest of the work in [Snt1] is about replacing the standard
Segal–Bargmann space by a similar ‘weighted’ space. A Hausdorff–Young type family of
inequalities is proved by using Stein’s interpolation theorem instead of the Riesz–Thorin
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theorem. Finally, following the same kind of ideas that lead to the Hirschman inequality, the
logarithmic-Sobolev inequality

C1SL2(R,dg)(f ) � C2SL2(C,dνGauss)(Bf ) + C3〈f,Nf 〉L2(R,dg) + C4‖f ‖2
L2(R,dg) (1.2)

is shown, where 〈f,Nf 〉L2(R,dg) is the quadratic form associated with the energy (or number)
operator N = a∗a acting in the ground state representation L2(R, dg). Some explanations
about why (1.2) is called a ‘log-Sobolev inequality’ are presented in section 6. The motivation
of the present work was whether results similar to (1.1) and (1.2) are also valid in the context
of the µ-deformed theory of the Segal–Bargmann transform mentioned above. The answers
we obtained are presented here.

We now outline the content of the work. In section 2 we give the definitions and some
preliminary results that will be used throughout the work. The Banach spaces introduced in
that section, which will be involved in the µ-deformed Segal–Bargmann spaces considered in
the work (introduced in section 3), are ‘weighted’ spaces labelled by a parameter λ > 0. In
the case µ = 0 considered in [Snt1], a weight a is introduced, and this parameter is related
with λ by λ = 1 + a. Also, in the case p = 2 and µ > −1/2 in [Marr], a weight α is
introduced which can be identified with our parameter λ. The case in which p � 1 and µ � 0,
considered in this work, generalizes the case treated in [Snt1] and the case treated in [Marr] as
well.

In section 3 we introduce the µ-deformed objects (‘generalized’ objects, in the
nomenclature of Rosenblum and Marron) of Segal–Bargmann analysis with which we
will work. So we introduce the µ-deformed ground state representation Lp(R, dgµ), the
λ-weighted µ-deformed Segal–Bargmann space Bq

µ,λ and the µ-deformed Segal–Bargmann
transform Bµ, for which we are interested in values of p, q and λ > 0 such that Bµ is a
bounded operator from Lp(R, dgµ) to Bq

µ,λ.
In section 4 we show that if the Lebesgue indices 1 < p � ∞, 1 � q < ∞ and the

weight λ > 1/2 are such that the inequalities p > 1 + q/(2λ) and 1 � q < 2λ hold, then
the transform Bµ is a bounded operator from Lp(R, dgµ) to Bq

µ,λ. Observe that the sufficient
conditions for this result depend on λ but not on µ. By setting µ = 0 and λ = 1 we obtain
theorem 3.1 of [Snt1]. The importance of the weight λ in the codomain space is shown by
noting that for any 1 < p � ∞ and 1 � q < ∞, the µ-deformed Segal–Bargmann transform
Bµ is always a bounded operator from Lp(R, dgµ) to Bq

µ,λ provided λ is large enough, namely
λ > max(q/2, q/(2(p − 1)).

From [Ros1], [Ros2] and [Marr] we know that the µ-deformed Segal–Bargmann transform
Bµ is a unitary operator from L2(R, dgµ) onto B2

µ,λ, provided λ = 1. In particular we have
that for p = q = 2 and λ = 1, the operator Bµ is bounded. We prove in section 5 that
the condition λ = 1 is also necessary for Bµ to be a unitary operator from L2(R, dgµ) to
B2

µ,λ.
The discussion about Hausdorff–Young type inequalities and Hirschman inequalities

is presented in section 5. In that section we work with the µ-deformed Segal–Bargmann
transform Bµ as an operator from Lp(R, dgµ) to the unweighted µ-deformed Segal–
Bargmann space Bq

µ. We take the parameters p and q such that the inequalities p > 1 + q/2
and 1 � q < 2 hold, which imply that Bµ is a bounded operator. In the case p = q = 2
the operator Bµ is also bounded since in this case Bµ is unitary. By applying the Riesz–
Thorin interpolation theorem, we obtain estimates of the operator norm of Bµ as an operator
from Lps (R, dgµ) to Bqs

µ , s ∈ [0, 1], where
(
p−1

s , q−1
s

)
is a point in the segment connecting

(2−1, 2−1) with (p−1, q−1). In this way we obtain a Hausdorff–Young type inequality. This
inequality has the property that if we set s = 0 in it, the inequality becomes an equality, and
this fact plays an important role in the idea (called the ‘differentiation technique’) in the proof
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of the Hirschman inequality proved in this section. The inequality we obtain is

C1SL2(R,dgµ)(f ) � C2SL2(C×Z2,dνµ)(Bµf ) + C3‖f ‖2
L2(R,dgµ). (1.3)

If we set µ = 0 we recover the inequality (1.1). (The explanation of why the probability
measure space (C, dνGauss) is recovered by setting µ = 0 and λ = 1 in the measure space
(C × Z2, dνµ,λ) is included in section 2.) Nevertheless we mention that the proof presented in
[Snt1] of the inequality (1.1) works for all f ∈ L2(R, dg), while the proof of (1.3) presented
here is only valid for functions f in a dense subspace of L2(R, dgµ).

In section 6 we prove a log-Sobolev inequality following the same steps of the proof
of (1.2) in [Snt1]. That is, by using Stein’s interpolation theorem we prove first a weighted
Hausdorff–Young type inequality, and then by applying the differentiation technique of [Hir]
to it, we get the desired log-Sobolev inequality. In the process of proving (1.2) there appears
naturally an energy term 〈Bf, ÑBf 〉B2 , which is the quadratic form associated with the energy
operator Ñ acting in the Segal–Bargmann space B2 (see [Snt1], pp 2413–14). But the unitarity
of the Segal–Bargmann transform gives us that the energy 〈Bf, ÑBf 〉B2 is equal to the energy
〈f,Nf 〉L2(R,dg) for f ∈ L2(R, dg), where N = B−1ÑB is the energy operator acting on the
ground-state representation L2(R, dg). It is this latter term which appears in (1.2). In the
λ-weighted µ-deformed situation we are dealing with there will appear a new mathematical
object that generalizes the energy term 〈Bf, ÑBf 〉B2 (corresponding to the Segal–Bargmann
transform of f ∈ L2(R, dg)). We will call it ‘dilation energy’ and denote it by Eµ,λ(Bµf )

(corresponding to the µ-deformed Segal–Bargmann transform of f ∈ L2(R, dgµ)). The
log-Sobolev inequality we prove in section 6 is

C1SL2(C×Z2,dνµ)(Bµf ) + C2SL2(R,dgµ)(f ) � C3Eµ,λ(Bµf ) + C4‖f ‖2
L2(R,dgµ). (1.4)

As is expected, by setting µ = 0 in (1.4) we can recover the inequality (1.2).
Finally, in section 7 we present some conclusions and indicate some questions that we

have left unanswered in this work.
The first author has described in [Pi] a formalism which allows this theory to be developed

to the context of R
n and C

n in place of R and C. (See also [B-O].) We have not presented this
here, since the ideas are the same as in the case n = 1 which we consider.

For more background on these topics and our interest in them, consult the introduction of
our recent paper [P-S].

2. Preliminaries

In this section we give the definitions and the notation (as well as some preliminary results) that
we will use throughout the work. First, we take µ � 0 and λ > 0 to be fixed parameters. The
(Coxeter) group Z2 is the multiplicative group {−1, 1}, and log is the natural logarithm (base e).
We use the convention 0 log 0 = 0 (which makes the function φ : [0,∞) → R, φ(x) = x log x

continuous). We also use the convention that C denotes a constant (a quantity that does not
depend on the variables of interest in the context), which may change its value every time it
appears. We will use when necessary (without further comment) the elementary inequality
(α + β)r � Cr(α

r + βr), valid for all r > 0 and α, β � 0. For two positive functions f

and g such that limx→a
f (x)

g(x)
= 1, we use the notation f (x) ∼= g(x) as x → a. For a given

p ∈ [1, +∞] we will denote by p′ ∈ [1, +∞] the Lebesgue dual index of p. We denote
by H(C) the space of holomorphic functions f : C → C with the topology of uniform
convergence in compact sets.

We begin by defining the µ-deformed factorial function γµ and µ-deformed exponential
function eµ. Let N denote the set of positive integers.
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Definition 2.1. The µ-deformed factorial function γµ : N ∪ {0} → R is defined by γµ(0) = 1
and

γµ(n) := (n + 2µθ(n))γµ(n − 1),

where n ∈ N and θ : N → {0, 1} is the characteristic function of the odd positive integers.
The µ-deformed exponential function eµ : C → C is defined by the power series

eµ(z) :=
∞∑

n=0

zn

γµ(n)
.

We note that γ0(n) = n! and so e0(z) = exp(z). It is clear that the power series in the
definition of eµ(z) is absolutely convergent for all z ∈ C. So the µ-deformed exponential eµ

is an entire function. Also note that γµ(n) � n! (since we are assuming that µ � 0), and thus
we have the inequality eµ(x) � exp(x) for all real non-negative x.

In [Ros1] (lemma 2.3) it is shown that for µ > 0 and z ∈ C one has the following integral
representation of the µ-deformed exponential function:

eµ(z) =
∫ 1

−1
exp(tz) dσµ(t), (2.1)

where dσµ is the probability measure on [−1, 1] given by

dσµ(t) := 1

B
(

1
2 , µ

) (1 − t)µ−1(1 + t)µ dt

and where B is the beta function (see [Leb], p 13). Note that B
(

1
2 , µ

)
> 0 for µ > 0. From

this representation one gets easily the fact that eµ(x) > 0 for all x ∈ R.

Lemma 2.1. For all µ � 0 and q � 1 the following inequality holds for all z ∈ C:

|eµ(z)|q � eµ(q Re z). (2.2)

Proof. Observe that if µ = 0 the inequality reduces to a trivial equality for all q ∈ R. If
q = 1 and µ > 0, one has, by using the integral representation (2.1) of eµ(z), that

|eµ(z)| �
∫ 1

−1
|exp(tz)| dσµ(t) =

∫ 1

−1
exp(t Re z) dσµ(t) = eµ(Re z),

which proves the validity of the inequality for all µ > 0 and q = 1. Thus, it remains to prove
the inequality in the case µ > 0 and q > 1. Again by using the integral representation (2.1)
of eµ(z), Hölder’s inequality and the fact that dσµ is a probability measure in [−1, 1], we have
that

|eµ(z)| �
(∫ 1

−1
|exp(tz)|q dσµ(t)

) 1
q
(∫ 1

−1
dσµ(t)

) 1
q′

=
(∫ 1

−1
exp(qt Re z) dσµ(t)

) 1
q

= (eµ(q Re z))
1
q ,

which proves the inequality in this case. �

The following definition is due to Angulo and the second author (see [A-S.2]).
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Definition 2.2. Let λ > 0. We define the measure dνµ,λ on the space C × Z2 by

dνµ,λ(z, 1) := λ
2

1
2 −µ

π�
(
µ + 1

2

)Kµ− 1
2
(λ|z|2)∣∣λ 1

2 z
∣∣2µ+1

dx dy, (2.3)

dνµ,λ(z,−1) := λ
2

1
2 −µ

π�
(
µ + 1

2

)Kµ+ 1
2
(λ|z|2)∣∣λ 1

2 z
∣∣2µ+1

dx dy, (2.4)

where � is the Euler gamma function, Kα is the Macdonald function of order α (both defined
in [Leb]) and dx dy is Lebesgue measure on C.

By convention, in the case λ = 1 we will omit the parameter λ in the notation of the
measure.

The Macdonald function Kα is the modified Bessel function of the third kind (with purely
imaginary argument, as described in [Wat], p 78), which is known to be a holomorphic function
on C\ (−∞, 0] and is entire with respect to the parameter α. Nevertheless, our interest will be
only in the values and behaviour of this function for x ∈ R

+ and α ∈ R. For z ∈ C, |arg z| < π

and α /∈ Z, the Macdonald function can be defined as

Kα(z) = π

2

I−α(z) − Iα(z)

sin(απ)

(see [Leb], p 108), where Iα(z) is the modified Bessel function of the first kind. For α ∈ Z, we
define Kα(z) = limβ→α Kβ(z). This expression shows that Ka(z) is an even function of the

parameter α. In particular, since I 1
2
(z) = (

2
πz

) 1
2 sinh z and I− 1

2
(z) = (

2
πz

) 1
2 cosh z (see [Leb],

p 112), we have that

K± 1
2
(z) =

(
π

2z

) 1
2

exp(−z), (2.5)

which shows that for µ = 0 the measures defined on C by (2.3) and (2.4) are the same
Gaussian measure:

dν0,λ(z, 1) = dν0,λ(z,−1) = λ

π
exp(−λ|z|2) dx dy.

As is noted in [A-S.2], the last expression, when compared with the Gaussian measure

dνGauss,h̄(z) := 1

πh̄
exp

(
−|z|2

h̄

)
dx dy,

this being the measure of the Segal–Bargmann space, allows us to identify λ with h̄−1, where
h̄ > 0 is Planck’s constant. (When h̄−1 = λ = 1 we write this measure simply as dνGauss.) We
consider Planck’s constant as a positive parameter. See [Hall], where h̄ is also identified with
a ‘time’ parameter denoted by t.

By using the formula∫ ∞

0
Kα(s)sβ−1 ds = 2β−2�

(
β − α

2

)
�

(
β + α

2

)
,

which holds if Re β > |Re α| (see [Wat], p 388), we see that∫
C

dνµ,λ(z, 1) = λ
2

1
2 −µ

π�
(
µ + 1

2

) ∫
C

Kµ− 1
2
(λ|z|2)∣∣λ 1

2 z
∣∣2µ+1

dx dy

= 2
1
2 −µ

�
(
µ + 1

2

) ∫ ∞

0
Kµ− 1

2
(s)sµ+ 1

2 ds

= 1,
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(where s = λr2, r = |z|), and∫
C

dνµ,λ(z,−1) = λ
2

1
2 −µ

π�
(
µ + 1

2

) ∫
C

Kµ+ 1
2
(λ|z|2)∣∣λ 1

2 z
∣∣2µ+1

dx dy

= 2
1
2 −µ

�
(
µ + 1

2

) ∫ ∞

0
Kµ+ 1

2
(s)sµ+ 1

2 ds

= π
1
2 �(µ + 1)

�
(
µ + 1

2

) .

That is, the measures dνµ,λ(z, 1) and dνµ,λ(z,−1) on C are finite, and moreover the
former is a probability measure. Another way of seeing this is given in [A-S.2].

The integral representation

Kα(z) =
∫ ∞

0
exp(−z cosh u) cosh(αu) du Re z > 0

(see [Leb], p 119) gives us at once two important properties of the Macdonald function. The
first is that Kα(x) > 0 for all x ∈ R

+, and the second is that Kα is a monotone decreasing
function for x ∈ R

+.
We will use the following facts about the asymptotic behaviour of the Macdonald function

(see [Leb], pp 110, 136):

Kα(x) ∼= 2|α|−1� (|α|)
x|α| as x → 0+ if α �= 0. (2.6)

K0(x) ∼= log
2

x
as x → 0+. (2.7)

Kα(x) ∼=
( π

2x

) 1
2

exp(−x) as x → +∞ for all α ∈ R. (2.8)

We will be dealing with the complex Banach spaces Lp(�, dν), where (�, dν) is a
measure space and 1 � p � ∞. In fact, the measure spaces (�, dν) involved in this work
will always be finite. We will denote the norm of a vector f ∈ Lp(�, dν) by ‖f ‖Lp(�,dν). If
(�i, dνi), i = 1, 2, are measure spaces and p, q � 1, the norm of an operator defined in some
dense subspace D of Lp(�1, dν1) with image in Lq(�2, dν2) is defined by

‖T ‖p→q := sup
{‖Tf ‖Lq(�2,dν2) : f ∈ D, ‖f ‖Lp(�1,dν1) = 1

}
.

This is the operator norm of T. Although the corresponding measure spaces (�i, dνi),

i = 1, 2, do not appear in the notation ‖T ‖p→q , these spaces will be clear from context.
The most important operators we will deal with in this work are operators T from some

dense domain D of a space Lp(X, dρ) into some space Lq(Y, dσ) (where (X, dρ) and (Y, dσ)

are finite measure spaces), which are integral kernel operators of the form

(Tf )(y) =
∫

X

T̃ (x, y)f (x) dρ(x),

where T̃ : X × Y → C is a measurable function, called the kernel of the operator T and
usually denoted by the same letter T. We define the Hille–Tamarkin norm of the kernel T,
denoted by |‖T ‖|p,q (unfortunately with the same ambiguity as that of the operator norm), by

|‖T ‖|p,q := ‖Tp‖Lq(Y,dσ), (2.9)
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where Tp(y) = ‖T (·, y)‖Lp′
(X,dρ), y ∈ Y . If 1 < p � ∞ and 1 � q < ∞, we explicitly have

|‖T ‖|p,q =
{∫

Y

(∫
X

|T (x, y)|p′
dρ(x)

) q

p′
dσ(y)

} 1
q

.

(Note that |‖T ‖|2,2 is the Hilbert–Schmidt norm of T.)
Given a pair of Lebesgue indices (p, q) ∈ [1,∞]× [1,∞], we say that the integral kernel

operator T (as described above) is a Hille–Tamarkin operator with respect to the pair (p, q)

if the Hille–Tamarkin norm (2.9) is finite. It can be proved that the set of Hille–Tamarkin
operators with respect to (p, q) is a complex vector space, that (2.9) defines a norm on it, and
that this normed space is in fact a Banach space (see theorem 11.5 of [J]).

We will use also the following two results (see [J], theorems 11.5 and 11.6).

Proposition 2.1. ‖T ‖p→q � |‖T ‖|p,q .

This proposition tells us that the Hille–Tamarkin operators with respect a given pair (p, q)

are bounded from Lp(X, dρ) to Lq(Y, dσ).

Proposition 2.2. If |‖T ‖|p,q < ∞ and 1 � q < ∞ and 1 < p � ∞, then T is a compact
operator from Lp(X, dρ) to Lq(Y, dσ).

We will work with the Banach space Lp(C × Z2, dνµ,λ), where p � 1.
Let us consider the space

Bp,µ,λ = {f : C → C | fe ∈ Lp(C, dνµ,λ|C×{1}) and fo ∈ Lp(C, dνµ,λ|C×{−1})},
where f = fe + fo is the decomposition of f in its even and odd parts. Here and
subsequently we identify these two restrictions of dνµ,λ as measures on C, using C ∼=
C × {1} ∼= C × {−1}. Moreover, we will use without further comment the notation fe

(fo) for the even part (the odd part, respectively) of a function f .
For p � 1 and f ∈ Bp,µ,λ, we define

‖f ‖p

Bp,µ,λ
:= ‖fe‖p

Lp(C,dνµ,λ|C×{1}) + ‖fo‖p

Lp(C,dνµ,λ|C×{−1}).

The linear map � : Bp,µ,λ → Lp(C × Z2, dνµ,λ) defined as (�f )(z, 1) = fe(z) and
(�f )(z,−1) = fo(z) is injective and has the property that

‖f ‖Bp,µ,λ
= ‖�f ‖Lp(C×Z2,dνµ,λ) (2.10)

for all f ∈ Bp,µ,λ. Therefore ‖·‖Bp,µ,λ
is a norm on Bp,µ,λ. It is not hard to show that the

range of � is a closed subspace of Lp(C × Z2, dνµ,λ) for p � 1. (The proof is similar to
one found in [Hall].) Therefore Bp,µ,λ is a Banach space, since we have identified it with
a closed subspace of the Banach space Lp(C × Z2, dνµ,λ). For a function f ∈ Bp,µ,λ we
will sometimes write its norm as ‖f ‖Lp(C×Z2,dνµ,λ), meaning that we are using (2.10) and
identifying f with �f .

We will use the notations dνe,µ,λ and dνo,µ,λ for the restrictions dνµ,λ|C×{1} and
dνµ,λ|C×{−1}, respectively. So for f ∈ Bp,µ,λ we have

‖f ‖p

Bp,µ,λ
= ‖fe‖p

Lp(C,dνe,µ,λ)
+ ‖fo‖p

Lp(C,dνo,µ,λ)
= ‖fe‖p

Bp,µ,λ
+ ‖fo‖p

Bp,µ,λ
.

Observe that this says that Bp,µ,λ = Be,p,µ,λ ⊕ Bo,p,µ,λ, where

Be,p,µ,λ = {f ∈ Bp,µ,λ | f = fe}
and

Bo,p,µ,λ = {f ∈ Bp,µ,λ | f = fo}
are Banach subspaces of Bp,µ,λ.
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Let us consider the dilation operator Tλ(f )(z) = f
(
λ

1
2 z

)
. Let us see that Tλ is an isometry

from Bp,µ onto Bp,µ,λ. Observe that∫
C

|f (z)|pKµ− 1
2
(|z|2)|z|2µ+1 dx dy =

∫
C

∣∣f (
λ

1
2 z

)∣∣pλKµ− 1
2
(λ|z|2)∣∣λ 1

2 z
∣∣2µ+1

dx dy

by a change of variables. This shows that Tλf ∈ Be,p,µ,λ if and only if f ∈ Be,p,µ, and
moreover, that ‖f ‖Bp,µ

= ‖Tλf ‖Bp,µ,λ
. Similarly, Tλf ∈ Bo,p,µ,λ if and only if f ∈ Bo,p,µ,

and ‖f ‖Bp,µ
= ‖Tλf ‖Bp,µ,λ

. Since clearly (Tλf )e = Tλ(fe) and (Tλf )o = Tλ(fo), we have
that

‖f ‖p

Bp,µ
= ‖fe‖p

Bp,µ
+ ‖fo‖p

Bp,µ

= ‖Tλ(fe)‖p

Bp,µ,λ
+ ‖Tλ(fo)‖p

Bp,µ,λ

= ‖Tλf ‖p

Bp,µ,λ
,

which proves our claim. In particular, when p = 2, the dilation operator Tλ is unitary.

Definition 2.3. Let (�, dν) be a finite measure space, that is, 0 < ν(�) < ∞. For
f ∈ L2(�, dν), the entropy SL2(�,dν)(f ) is defined by

SL2(�,dν)(f ) :=
∫

�

|f (ω)|2 log |f (ω)|2 dν(ω) − ‖f ‖2
L2(�,dν) log ‖f ‖2

L2(�,dν). (2.11)

This definition was introduced by Shannon [Sha] in his Theory of Communication. Note
that, since (�, dν) is a finite measure space, the entropy SL2(�,dν)(f ) makes sense for all f ∈
L2(�, dν). Moreover, by considering the convex function φ : [0,∞) → R, φ(x) = x log x,
and the probability measure space (�, dν ′), where dν ′ = W−1 dν,W = ν(�), we have by
Jensen’s inequality (see [L-L], p 38) that(∫

�

|f (ω)|2 dν(ω)

)
log

(
1

W

∫
�

|f (ω)|2 dν(ω)

)
�

∫
�

|f (ω)|2 log |f (ω)|2 dν(ω)

or

(−log W)‖f ‖2
L2(�,dν) � SL2(�,dν)(f ),

which shows that SL2(�,dν)(f ) �= −∞, though SL2(�,dν)(f ) = +∞ can happen. Also observe
that SL2(�,dν ′)(f ) � 0, though SL2(�,dν)(f ) can be negative. Finally, note that SL2(�,dν)(f ) is
homogeneous of degree 2.

3. The λ-weighted µ-deformed Segal–Bargmann space and its transform

We begin by defining the Segal–Bargmann space of interest for us in this work.

Definition 3.1. Let 1 � q < ∞. The λ-weighted µ-deformed Segal–Bargmann space,
denoted by Bq

µ,λ, is defined as

Bq

µ,λ := H(C) ∩ Bq,µ,λ.

Although this definition makes sense for 0 < q < ∞, we will only be interested in the
case 1 � q < ∞, since in this case the space Bq

µ,λ (the holomorphic subspace of the Banach
space Bq,µ,λ) is a Banach space with the norm of Bq,µ,λ.

If we decompose the space H(C) of holomorphic functions f : C → C, as H(C) =
He(C) ⊕ Ho(C), where

He(C) := {f ∈ H(C) : f = fe} and Ho(C) := {f ∈ H(C) : f = fo}
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are the subspaces of the even and odd functions of H(C), respectively, then by writing
H(C) � f = fe + fo, the space Bq

µ,λ is just the space of holomorphic functions f : C → C

such that the even part fe (the odd part fo) of f is q integrable with respect to the measure
dνe,µ,λ (with respect to the measure dνo,µ,λ, respectively). That is,

Bq

µ,λ = {f ∈ H(C) : fe ∈ Lq(C, dνe,µ,λ) and fo ∈ Lq(C, dνo,µ,λ)}.
Yet another way to think of Bq

µ,λ is as

Bq

µ,λ = Bq

e,µ,λ ⊕ Bq

o,µ,λ,

where

Bq

e,µ,λ = H (C) ∩ Be,q,µ,λ = He(C) ∩ Bq,µ,λ

and

Bq

o,µ,λ = H(C) ∩ Bo,q,µ,λ = Ho(C) ∩ Bq,µ,λ

are the even and odd subspaces of Bq

µ,λ.
In the case q = 2, the inner product of the Hilbert space B2

µ,λ (from which the norm on
B2

µ,λ defined above comes) is

〈f, g〉B2
µ,λ

= 〈fe, ge〉L2(C,dνe,µ,λ) + 〈fo, go〉L2(C,dνo,µ,λ).

We then have that the even subspace B2
e,µ,λ of the space B2

µ,λ is orthogonal to its odd
subspace Bq

o,µ,λ, and B2
µ,λ = B2

e,µ,λ ⊕ B2
o,µ,λ as Hilbert spaces. When µ = 0 and λ = 1 we

have the Segal–Bargmann space B2 = H(C)∩L2(C, dνGauss) that appears in the ‘undeformed’
theory (see [Hall]).

Observe that Tλ : B2
µ → B2

µ,λ, (Tλf )(z) = f
(
λ

1
2 z

)
is a unitary operator. This comes

from the fact that the dilation operator Tλ : B2,µ → B2,µ,λ is unitary (as we proved in the
previous section), and the fact that Tλf ∈ H(C) if and only if f ∈ H(C).

The space B2
µ with µ > − 1

2 was studied by Rosenblum [Ros2] and by Marron [Marr].

It is known that
{
ξ

µ
n

}∞
n=0, where ξ

µ
n (z) := (γµ(n))−

1
2 zn, is an orthonormal basis of B2

µ (see

[Marr], p 15, and [A-S.1]). It follows that
{
χ

µ
n

}∞
n=0, where χ

µ
n (z) := (γµ(n))−

1
2 λ

n
2 zn, is an

orthonormal basis of B2
µ,λ, which is obtained by applying the dilation operator Tλ : B2

µ → B2
µ,λ

to the elements of the basis
{
ξ

µ
n

}∞
n=0.

Rosenblum and Marron considered the µ-deformed Bargmann transform B̃µ :
L2(R, |t |2µ dt) → B2

µ (which they called the generalized Segal–Bargmann transform).

This can be defined by B̃µ

(
φ

µ
n

) = ξ
µ
n , where

{
ξ

µ
n

}∞
n=0 is the orthonormal basis of the

µ-deformed Segal–Bargmann space B2
µ mentioned above, and

{
φ

µ
n

}∞
n=0 is the orthonormal

basis of L2(R, |t |2µ dt) formed by the µ-deformed Hermite functions φ
µ
n defined by

φµ
n (t) :=

(
γµ(n)

�
(
µ + 1

2

)) 1
2 1

2
n
2 n!

exp

(
− t2

2

)
Hµ

n (t),

where H
µ
n (t) is the nth µ-deformed Hermite polynomial defined by the generating function

exp(−z2)eµ(2tz) =
∞∑

n=0

Hµ
n (t)

zn

n!
.

(It is easy to check that H
µ
n (t) so defined is in fact a polynomial of degree n in t.) Clearly

B̃µ is a unitary map from the µ-deformed quantum configuration space L2(R, |t |2µ dt) onto
the µ-deformed quantum phase space B2

µ. We mention that the parameter µ in the work
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of Rosenblum and Marron takes values in
(− 1

2 , +∞)
, and not only in [0, +∞) as we are

considering in this work. As far as we know, the inequality of lemma 2.1 is valid only for
non-negative values of µ. This lemma is used in the proof of the main result of the next section
(theorem 4.1), and this result in turn plays a fundamental role in the statement and proof of
the theorems of sections 5 and 6.

An explicit formula for B̃µ is (see [Marr], p 16)

(B̃µf )(z) = 1(
�

(
µ + 1

2

)) 1
2

exp

(
−z2

2

) ∫
R

f (t)eµ

(
2

1
2 tz

)
exp

(
− t2

2

)
|t |2µ dt.

The point of view we will adopt here (as in [Snt1]) is to replace the µ-deformed
quantum configuration space L2(R, |t |2µ dt) by another unitarily equivalent space L2(R, dgµ),

known as the µ-deformed ground state representation, where dgµ(t) := (
φ

µ

0 (t)
)2|t |2µ dt and

φ
µ

0 (t) = (
�

(
µ + 1

2

))− 1
2 exp

(− t2

2

)
is the ground state (the first element of the orthonormal

basis
{
φ

µ
n

}∞
n=0 of L2(R, |t |2µ dt) mentioned above). Note that dgµ is a probability measure

that generalizes the Gaussian probability measure dg(t) := π− 1
2 exp(−t2) dt that appears in

the case µ = 0 (see [Hall], p 25). Explicitly dgµ looks like

dgµ(t) = (
�

(
µ + 1

2

))−1
exp(−t2)|t |2µ dt. (3.1)

Also, it is clear that G : L2(R, |t |2µ dt) → L2(R, dgµ) defined as

(Gf ) (t) =
(

�

(
µ +

1

2

)) 1
2

exp

(
t2

2

)
f (t) = f (t)

φ
µ

0 (t)

is a unitary onto map, and then Bµ = B̃µ ◦ G−1 : L2(R, dgµ) → B2
µ is also a unitary map

from the µ-deformed ground state representation L2(R, dgµ) onto the µ-deformed Segal–
Bargmann space B2

µ. It is easy to see, from the explicit formula for B̃µ and (3.1), that an
explicit formula for Bµ is

(Bµf )(z) = exp

(
−z2

2

) ∫
R

eµ

(
2

1
2 tz

)
f (t) dgµ(t).

We will call the transform Bµ : L2(R, dgµ) → B2
µ, defined by the formula above, the

µ-deformed Segal–Bargmann transform. Observe that if we set µ = 0 this formula becomes

(B0f ) (z) =
∫

R

exp

(
−z2

2
+ 2

1
2 tz

)
f (t) dg(t),

which is the ‘usual’ Segal–Bargmann transform studied, for example, in [Hall], where it is
shown that is a unitary map from the quantum configuration space L2(R, dg) (the ground-
state representation) onto the quantum phase space B2 = H(C) ∩ L2(C, dνGauss) (the Segal–
Bargmann space).

For example, let us consider the function fn(t) = tn which lies in L2(R, dgµ) for any
integer n � 0. The µ-deformed Segal–Bargmann transform of fn is

(Bµfn)(z) =
(

�

(
µ +

1

2

))−1

exp

(
−z2

2

) ∫
R

eµ

(
2

1
2 tz

)
tn exp(−t2)|t |2µ dt.

To evaluate this we will use∫
R

eµ (−ixt) tn exp(−t2)|t |2µ dt = (−i)n�
(
µ + 1

2

)
γµ(n)

2nn!
exp

(
−x2

4

)
Hµ

n

(x

2

)
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(see [Ros1], p 378). Then we have that

(Bµfn)(z) = γµ(n)

n!

(
− i

2

)n

Hµ
n

(
2− 1

2 iz
)
.

For example, if n = 0 we have H
µ

0 (t) = 1 and then (Bµf0)(z) = 1. If n = 1 we have
H

µ

1 (t) = 2
1+2µ

t and then (Bµf1)(z) = 2− 1
2 z. If n = 2 we have H

µ

2 (t) = 4
1+2µ

t2 − 2 and

then (Bµf2)(z) = 1
2z2 + 1+2µ

2 , and so on. It is clear that Bµ maps polynomials of degree n in
L2(R, dgµ) to polynomials of degree n in B2

µ.
Writing Bµ as an integral kernel operator (and, as usual, writing the kernel also as Bµ)

we have that

(Bµf )(z) =
∫

R

Bµ(z, t)f (t) dgµ(t), (3.2)

where the kernel Bµ : C × R → C is

Bµ(z, t) = exp

(
−z2

2

)
eµ

(
2

1
2 tz

)
.

For each z = x + iy ∈ C fixed, let us consider the function t �→ Bµ(z, t). If 1 < p � ∞
we have that∫

R

|Bµ(z, t)|p′
dgµ(t)

=
(

�

(
µ +

1

2

))−1 ∣∣∣∣exp

(
−z2

2

)∣∣∣∣p
′ ∫

R

∣∣eµ

(
2

1
2 tz

)∣∣p′
exp(−t2)|t |2µ dt

�
(

�

(
µ +

1

2

))−1

exp

(
−p′ x

2 − y2

2

) ∫
R

eµ

(
2

1
2 p′tx

)
exp(−t2)|t |2µ dt

= exp

(
p′

2
(p′ − 1)x2 +

p′

2
y2

)
< ∞,

where we used the inequality (2.2) and the equality∫
R

eµ

(±2
1
2 p′xt

)
exp(−t2)|t |2µ dt = �

(
µ +

1

2

)
exp

(
p′2x2

2

)
, (3.3)

which comes from the formula∫
R

eµ(−ix̃t)eµ(iỹt) exp(−ηt2)|t |2µ dt = �
(
µ + 1

2

)
ηµ+ 1

2

exp

(
− x̃2 + ỹ2

4η

)
eµ

(
x̃ỹ

2η

)
(see [Ros1], p 379) with x̃ = ±i2

1
2 p′x, ỹ = 0 and η = 1. This shows that the function

t �→ Bµ(z, t) belongs to the space Lp′
(R, dgµ).

Observe that if f ∈ Lp(R, dgµ), 1 < p � ∞, we have by Hölder’s inequality that∫
R

|Bµ(z, t)f (t)| dgµ(t) �
(∫

R

|Bµ(z, t)|p′
dgµ(t)

) 1
p′ (∫

R

|f (t)|p dgµ(t)

) 1
p

< ∞.

That is, (Bµf )(z) defined in (3.2) makes sense for any f ∈ Lp(R, dgµ), 1 < p � ∞ and
any z ∈ C. Observe that Morera’s theorem tells us that Bµf : C → C is holomorphic. The
goal of the next section will be to identify values of p ∈ (1, +∞], q ∈ [1, +∞) and λ > 0
such that Bµ is a bounded operator from Lp(R, dgµ) to Bq

µ,λ. For example, we know that
when p = q = 2, λ = 1 (and µ � 0, a situation included in the work of Rosenblum and
Marron), the operator Bµ is bounded, since in this case Bµ is an isometry. But as we will see
in the next section, there are ‘lots’ of pairs of Lebesgue indices (p, q) ∈ (1, +∞] × [1, +∞)



On Hirschman and log-Sobolev inequalities in µ-deformed Segal–Bargmann analysis 8643

(or equivalently (p−1, q−1) ∈ [0, 1) × (0, 1], with the standard conventions 0−1 = +∞ and
+∞−1 = 0), and values of the parameter λ > 0, for which Bµ is a bounded operator from
Lp(R, dgµ) to Bq

µ,λ.
What we will do in the next section is to obtain sufficient conditions on the Lebesgue

indices p and q, and on the weight λ > 0 for Bµ to be a Hille–Tamarkin operator from
Lp(R, dgµ) to Lq(C × Z2, dνµ,λ). The rest of this section is devoted to making some
observations which will simplify the work of the proof of theorem 4.1.

Observe that, for any f ∈ Lp(R, dgµ) given, we can write the decomposition of the
function Bµf in its even and odd parts as

(Bµf )(z) = (Bµf )e(z) + (Bµf )o(z)

=
∫

R

Be,µ(z, t)f (t) dgµ(t) +
∫

R

Bo,µ(z, t)f (t) dgµ(t),

where

Be,µ(z, t) = 1

2
exp

(
−z2

2

) (
eµ

(
2

1
2 zt

)
+ eµ

(−2
1
2 zt

))
and

Bo,µ(z, t) = 1

2
exp

(
−z2

2

) (
eµ

(
2

1
2 zt

) − eµ

(−2
1
2 zt

))
are the even and odd parts of z �→ Bµ(z, t), respectively. Thus, we can consider operators
Be,µ and Bo,µ defined for all f ∈ Lp(R, dgµ), as Be,µf = (Bµf )e and Bo,µf = (Bµf )o, that
is

(Be,µf )(z) =
∫

R

Be,µ(z, t)f (t) dgµ(t),

(Bo,µf )(z) =
∫

R

Bo,µ(z, t)f (t) dgµ(t).

So Be,µ and Bo,µ are integral kernel operators whose kernels are the even and odd parts
of the kernel of the integral kernel operator Bµ. Suppose that there exist p ∈ (1, +∞], q ∈
[1, +∞) and λ > 0 such that Bµ is a bounded operator from Lp(R, dgµ) to Lq(C×Z2, dνµ,λ).
(We will see in the next section that such p, q, λ do exist.) Then we have that Be,µ is a bounded
operator from Lp(R, dgµ) to Lq(C, dνe,µ,λ) and Bo,µ is a bounded operator from Lp(R, dgµ)

to Lq(C, dνo,µ,λ). Conversely, if there exist p ∈ (1, +∞], q ∈ [1, +∞) and λ > 0 such that
Be,µ and Bo,µ are bounded operators from Lp(R, dgµ) to Lq(C, dνe,µ,λ) and to Lq(C, dνo,µ,λ),
respectively, then Bµ is a bounded operator from Lp(R, dgµ) to Lq(C × Z2, dνµ,λ).

Finally, let us note that since Bµ = Be,µ + Bo,µ, we have that |‖Bµ‖|p,q � |‖Be,µ‖|p,q +
|‖Bo,µ‖|p,q , so if Be,µ and Bo,µ are Hille–Tamarkin operators with respect to p and q, then Bµ

is a Hille–Tamarkin operator with respect to p and q.

4. Lp mapping properties of Bµ

The main result in this section is the following.

Theorem 4.1. Let 1 < p � ∞, 1 � q < ∞ and λ > 1
2 . A sufficient condition for Bµ to be a

Hille–Tamarkin operator from Lp(R, dgµ) to Lq(C × Z2, dνµ,λ) is that p, q and λ satisfy the
inequalities

p > 1 +
q

2λ
and 1 � q < 2λ. (4.1)
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(Note that these conditions do not depend on µ.)

Remark. In the case µ = 0 these conditions are also necessary for the operator to be
Hille–Tamarkin. See [Snt1]. We conjecture that this is also true in this more general context.

Proof. As we mentioned in the last section, it is sufficient to prove that the conditions (4.1)
imply that Be,µ and Bo,µ are Hille–Tamarkin operators with respect to p and q. We begin by
considering Be,µ. We have that

|Be,µ(z, t)| =
∣∣∣∣1

2
exp

(
−z2

2

) (
eµ

(
2

1
2 zt

)
+ eµ

(−2
1
2 zt

))∣∣∣∣
� exp

(
−x2 − y2

2

) (∣∣eµ

(
2

1
2 zt

)∣∣ +
∣∣eµ

(−2
1
2 zt

)∣∣),
where z = x +iy ∈ C, x, y ∈ R. Note that this inequality is also valid for the kernel Bo,µ(z, t).
By using (2.2) and (3.3) we have that(∫

R

|Be,µ(z, t)|p′
dgµ(t)

) 1
p′

�
{∫

R

(
exp

(
−x2 − y2

2

) (∣∣eµ

(
2

1
2 zt

)∣∣ +
∣∣eµ

(−2
1
2 zt

)∣∣))p′

dgµ(t)

} 1
p′

� C exp

(
−x2 − y2

2

) (∫
R

(∣∣eµ

(
2

1
2 zt

)∣∣p′
+

∣∣eµ

(−2
1
2 zt

)∣∣p′)
dgµ(t)

) 1
p′

� C exp

(
−x2 − y2

2

) (∫
R

(
eµ

(
p′2

1
2 xt

)
+ eµ

(−p′2
1
2 xt

))
exp(−t2)|t |2µ dt

) 1
p′

= C exp

(
−x2 − y2

2
+

p′x2

2

)
.

Thus we obtain

|‖Be,µ‖|p,q =
(∫

C

(∫
R

|Be,µ(z, t)|p′
dgµ(t)

) q

p′
dνe,µ,λ(z)

) 1
q

� C

(∫
C

exp

(
−q

x2 − y2

2
+

qp′x2

2

)
Kµ− 1

2
(λ|z|2)|z|2µ+1 dx dy

) 1
q

.

The last integral is finite if and only if for all M > 0 we have that∫
|z|>M

exp

(
−q

x2 − y2

2
+

qp′x2

2

)
Kµ− 1

2
(λ|z|2)|z|2µ+1 dx dy < ∞.

But for large enough M > 0 we can use the asymptotic behaviour given in (2.8) of
Kµ− 1

2
(λ|z|2) as |z| → ∞ (which does not depend on the order of the Macdonald function) to

conclude that the last expression is equivalent to∫
|z|>M

exp

((
−q

2
+

qp′

2
− λ

)
x2 +

(q

2
− λ

)
y2

)
(x2 + y2)µ dx dy < ∞,

which is equivalent to the conditions

−q

2
+

qp′

2
− λ < 0 and

q

2
− λ < 0,
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which are the conditions in the hypotheses of the theorem. We have proved that these
conditions guarantee that Be,µ is a Hille–Tamarkin operator. But, as we mentioned before, the
same estimates obtained for |‖Be,µ‖|p,q work for |‖Bo,µ‖|p,q , since the Macdonald function
Kµ+ 1

2
(λ|z|2) also has the same asymptotics as |z| → ∞. So the same conditions guarantee

that Bo,µ is a Hille–Tamarkin operator. So finally we conclude that the conditions on p, q and
λ in the theorem imply that Bµ is a Hille–Tamarkin operator from Lp(R, dgµ) to Lq(C × Z2,

dνµ,λ), as desired. �

We have proved that for p, q and λ as in (4.1), the Hille–Tamarkin norm of Bµ is finite,
and then proposition 2.1 allows us to conclude the boundedness of Bµ : Lp(R, dgµ) →
Lq(C × Z2, dνµ,λ). Observe that even though we do not have the case p = 2, q = 2 and
λ = 1 included in (4.1), we do have the boundedness of Bµ since for these values of p, q

and λ the operator Bµ is in fact unitary. In other words, the conditions imposed by the
inequalities (4.1) are sufficient to conclude the boundedness of Bµ, but those conditions are
not necessary. On the other hand, proposition 2.2 (together with theorem 4.1) tells us that the
inequalities (4.1) are also sufficient to conclude that Bµ is a compact operator from Lp(R, dgµ)

to Lq(C × Z2, dνµ,λ). The natural question is if in the case p = 2, q = 2 and λ = 1 the
operator Bµ is compact. The answer is no. In fact, we know that the Segal–Bargmann
transform B : L2(R, dg) → B2 is not a compact operator, since in this case B is a unitary
map onto the infinite-dimensional space B2. Thus, even though we have that ‖Bµ‖2→2 = 1,
we have that |‖Bµ‖|2,2 = ∞ (again by proposition 2.2).

The case µ = 0 and λ = 1 of theorem 4.1 is contained in theorem 3.1 of [Snt1]. So
we have that if 1 < p � ∞, 1 � q < ∞ are such that the inequalities p > 1 + q

2 and
1 � q < 2 hold, then the Segal–Bargmann transform B : L2(R, dg) → B2 is bounded. But
in this case we have more: if either p < 1 + q

2 or q > 2 holds, the Segal–Bargmann transform
B is unbounded (see corollary 7.2 in [Snt1]).

The pair (p−1, q−1) ∈ [0, 1) × (0, 1] is called admissible if ‖Bµ‖p→q < ∞.
The inequalities (4.1) can be written as

q−1 >
1

2λ

p−1

1 − p−1
and

1

2λ
< q−1 � 1. (4.2)

In the plane with points (p−1, q−1), the curve

q−1 = 1

2λ

p−1

1 − p−1

is a hyperbola with vertical asymptote p−1 = 1 and horizontal asymptote q−1 = − 1
2λ

. This
hyperbola passes through the origin and intersects the horizontal line q−1 = 1 in

(
2λ

2λ+1 , 1
)
.

Then, if R is the region determined by the inequalities (4.2), we have R∩([0, 1)×(0, 1]) �= ∅,
which shows the existence of a non-empty region of admissible pairs (p−1, q−1) for which
the µ-deformed Segal–Bargmann transform is a bounded operator from Lp(R, dgµ) to
Lq(C × Z2, dνµ,λ). Note that the condition λ > 1

2 guarantees the existence of q−1 ∈ (0, 1]
satisfying the inequality 1

2λ
< q−1 � 1 of (4.2).

We observe that the fact that (p−1, q−1) is an admissible pair depends on the value of
λ. For example, if λ = 2

3 , the pair
(

1
4 , 4

5

)
is admissible, since for these values of λ, p, and

q the inequalities (4.2) hold. Also, the pair
(

1
4 , 2

5

)
is admissible for λ = 2, but it is not, for

example, for λ = 1. (Certainly one easily checks that for p−1 = 1
4 , q−1 = 2

5 and λ = 1
the inequalities (4.2) do not hold. But as we have seen before this does not imply that the
pair

(
1
4 , 2

5

)
is not admissible for λ = 1. The conclusion comes from corollary 7.2 in [Snt1]

mentioned above, since in this case we have q > 2.) So we have that if the weight λ of
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Figure 1. Region where (4.2) holds for λ = 2 : 1
4 < q−1 � 1, q−1 >

p−1

4(1−p−1)
.

the codomain space Lq(C × Z2, dνµ,λ) is fixed and λ > 1
2 , then we always can find pairs

(p−1, q−1) (those that satisfy (4.2)) for which the µ-deformed Segal–Bargmann transform Bµ

is a bounded operator from Lp(R, dgµ) to Lq(C × Z2, dνµ,λ). Moreover, observe that if we
have a fixed pair (p−1, q−1) satisfying the inequalities (4.2) for a given λ1 > 1

2 , then these
inequalities are also satisfied for any λ � λ1.

But there is another point of view of the situation described above: any pair (p−1, q−1) ∈
[0, 1) × (0, 1] can be admissible, by taking an adequate value of λ. In fact, observe that if
we take

λ > max

(
1

2q−1
,

p−1

2q−1(1 − p−1)

)
, (4.3)

then the inequalities (4.2) are satisfied for any (p−1, q−1) ∈ [0, 1) × (0, 1]. That is,
for any pair (p, q) ∈ (1, +∞] × [1, +∞), the µ-deformed Segal–Bargmann transform
Bµ : Lp(R, dgµ) → Lq(C × Z2, dνµ,λ), where λ is taken as in (4.3), is a bounded operator.

Figures 1–3 show the regions of pairs (p−1, q−1) where (4.2) holds in the cases
λ = 2, λ = 1 and λ = 2

3 , respectively. So these regions are contained in the regions of
admissible pairs (p−1, q−1).

5. Hirschman inequalities

We know that Bµ : L2(R, dgµ) → B2
µ,λ is a unitary operator when λ = 1. So the condition

λ = 1 is sufficient for Bµ being unitary. The following result tells us that this condition is also
necessary.

Proposition 5.1. Suppose that the operator Bµ from L2(R, dgµ) to B2
µ,λ is unitary. Then

λ = 1.

Proof. Let f be a state of L2(R, dgµ) (i.e., ‖f ‖L2(R,dgµ) = 1). By taking the orthonormal
basis

{
ξ

µ
n

}∞
n=0 of B2

µ (see section 3), we can write Bµf ∈ B2
µ as Bµf = ∑∞

n=0 anξ
µ
n , where

the coefficients an ∈ C satisfy
∑∞

n=0 |an|2 = 1 (since in this case Bµ is unitary). We can take
f such that ak �= 0 for some k ∈ N. Suppose (in order to get a contradiction) that λ > 1. By
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Figure 2. Region where (4.2) holds for λ = 1 : 1
2 < q−1 � 1, q−1 >

p−1

2(1−p−1)
.

Figure 3. Region where (4.2) holds for λ = 2
3 : 3

4 < q−1 � 1, q−1 >
3p−1

4(1−p−1)
.

hypothesis we have that Bµf ∈ B2
µ,λ, so we can write Bµf in terms of the basis

{
χ

µ
n

}∞
n=0 ofB2

µ,λ

(where χ
µ
n = λ

n
2 ξ

µ
n ) as Bµf = ∑∞

n=0 λ− n
2 anχ

µ
n . Since we are assuming that the operator Bµ

from L2(R, dgµ) to B2
µ,λ is unitary, we have that 1 = ∑∞

n=0

∣∣λ− n
2 an

∣∣2 = ∑∞
n=0 λ−n |an|2, and

since λ > 1 and ak �= 0 for some k ∈ N, we have that 1 = ∑∞
n=0 λ−n |an|2 <

∑∞
n=0 |an|2 = 1,

a contradiction. A similar contradiction occurs in the case 0 < λ < 1. Thus we conclude that
λ = 1, as desired. �

In the same spirit as the Hausdorff–Young inequality (HYI, for short), which states the
boundedness of the Fourier transform F : Lp(R, dx) → Lp′

(R, dx) for p ∈ [1, 2] (see
[R-S], p 328), as well as other related theorems (see [We], pp 168–9), which also concern
boundedness properties of some operators between Lp spaces, we are going to establish an
inequality involving the operator norm of Bµ for a range of values of p and q. This result will
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play a central role in the demonstration of the main result of this section. The most important
tool used in the proof of this inequality is the Riesz–Thorin interpolation theorem, which is
also used in the demonstrations of the HYI and the other related theorems mentioned above.

Theorem 5.1 (Hausdorff–Young type inequality). Take 1 � q < 2, p > 1 + q

2 and ps and qs

defined by

ps = (sp−1 + (1 − s)2−1)−1

and

qs = (sq−1 + (1 − s)2−1)−1

for s ∈ [0, 1]. Then we have

1 � ‖Bµ‖ps→qs
� ‖Bµ‖s

p→q .

Proof. Observe that the pairs (2−1, 2−1) and (p−1, q−1) are admissible for Bµ and that
‖Bµ‖2→2 = 1 since Bµ is unitary. The Riesz–Thorin interpolation theorem (see [B-S], p 196)
says that for any s ∈ [0, 1], the operator Bµ from Lps (R, dgµ) to Lqs (C×Z2, dνµ) is bounded
and that ‖Bµ‖ps→qs

� ‖Bµ‖s
p→q‖Bµ‖1−s

2→2 = ‖Bµ‖s
p→q . Moreover, since Bµ1 = 1, we have

also the inequality ‖Bµ‖ps→qs
� 1, which completes the proof of the theorem. �

In the main result of this section, which we will present and prove shortly, we will face
the problem of differentiating functions of the form ϕ(s) = ‖f ‖LT (s)(�,dν) at s = 0, where
(�, dν) is a finite measure space, T : [0, 1] → R is the function

T (s) = 2ϑ

(2 − ϑ)s + ϑ
, (5.1)

ϑ � 1 is a parameter and f is a non-zero function in the space Lp (�, dν) for p > 2. More
precisely, we will need to calculate the right-hand derivative ϕ′ (0+), and of course before that,
to guarantee its existence.

If we naively calculate ϕ′ (0+), interchanging when necessary the differentiation with
integration and applying the rules from elementary calculus, we get

ϕ′(0+) =
(

1

2
− 1

ϑ

)
‖f ‖−1

L2(�,dν)
SL2(�,dν)(f ), (5.2)

where SL2(�,dν)(f ) is the entropy of f , defined in (2.11).
Note that by the very definition of ϕ′ (0+) a necessary condition for the existence of this

derivative is that ϕ(s) be finite in some interval of the form [0, ε). That is, we need that the
function f belong to LT (s) (�, dν) for 0 � s < ε. Let us write this necessary condition as
(NC). We can guarantee NC, if for example we require that f ∈ L2+ζ (�, dν) where ζ > 0,
since in this case we have T (0) = 2 < 2 + ζ which implies that there exists ε > 0 such
that T (s) < 2 + ζ for 0 � s < ε which in turn implies (using Hölder’s inequality) that
‖f ‖LT (s)(�,dν) � C‖f ‖L2+ζ (�,dν) < ∞ for 0 � s < ε. That is, the condition f ∈ L2+ζ (�, dν)

where ζ > 0 is a sufficient condition (denoted (SC)) for NC. (We mention that SC is not
necessary for NC, since if 1 � ϑ < 2 we have that f ∈ L2 (�, dν) is enough to imply NC
as one can easily check.) Surprisingly, the condition SC is also a sufficient condition for the
existence of ϕ′ (0+), and in such a case formula (5.2) obtained by formal derivation is the right
formula for this derivative. This is what the following lemma says; it is lemma 1.1 of [G] with
some minor changes.

Lemma 5.1. Let (�, dν) be a finite measure space. Suppose ε > 0, 1 < p0 < ∞, and p > p0.
Let T (s) be a real continuously differentiable function on [0, ε) such that T (0) = p0, and let
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F(s) be a continuously differentiable function on [0, ε) into Lp (�, ν) with F(0) = f �= 0.
Then ‖F(s)‖LT (s)(�,dν) is differentiable from the right at s = 0 and its derivative is given by

d

ds

∣∣∣∣
s=0+

‖F(s)‖LT (s)(�,dν)

= N1−p0

(
p−1

0 T ′ (0+
) (∫

�

|f |p0 log|f | dν − Np0 log N

)
+ Re〈F ′(0+), fp0〉

)
,

(5.3)

where N = ‖f ‖Lp0 (�,dν) and fp0 = (sgn f ) |f |p0−1.

We emphasize that under these hypotheses, the derivative (5.3) is a finite real number.

The sign of z ∈ C, denoted by sgn z, is defined as sgn z = z/|z| if z �= 0, and
sgn z = 0 if z = 0. In the case we are dealing with, namely ϕ(s) = ‖f ‖LT (s)(�,dν), we
have p0 = 2, p = 2 + ζ with ζ > 0, T (s) given by (5.1) (so that T ′(0) = − 2

ϑ
(2 − ϑ)), and F

is constant (equal to f for all s, so that F ′(0) = 0). Thus, if we denote the norm ‖f ‖L2(�,dν)

by N, formula (5.3) is in our case

d

ds

∣∣∣∣
s=0+

‖f ‖LT (s)(�,dν) = N−12−1

(−2 (2 − ϑ)

ϑ

) (∫
�

|f |2 log|f | dν − N2 log N

)
=

(
1

2
− 1

ϑ

)
N−1

(∫
�

|f |2 log|f |2 dν − N2 log N2

)
=

(
1

2
− 1

ϑ

)
N−1SL2(�,dν)(f ),

which is formula (5.2) for ϕ′ (0+).
Roughly speaking, an uncertainty principle is an inequality involving the variance of a

function f and the variance of its Fourier transform Ff . (See [Fol], p 27, for a more general
statement of an uncertainty principle.) For example, the Heisenberg uncertainty principle
states that for any f ∈ L2(R, dx) such that ‖f ‖L2(R,dx) = 1 one has[(∫

R

(x − �)2|f (x)|2 dx

) 1
2

] [(∫
R

(x − �̂)2 |(Ff )(x)|2 dx

) 1
2

]
� (4π)−1 ,

where the factors on the left-hand side are the variances of f and of Ff and

� =
∫

R

x|f (x)|2 dx and �̂ =
∫

R

x|(Ff )(x)|2 dx

(assumed to be finite) are the expected values of f and Ff , respectively. What this inequality
tells us is that the variances of f and Ff cannot be simultaneously arbitrarily small. Of
course, this has to do with the well-known physical version of the Heisenberg uncertainty
principle about the impossibility of determining simultaneously position and momentum of a
quantum particle.

In his paper [Hir], Hirschman obtained an inequality involving not the variances of f

and Ff , but their entropies. Specifically, he showed that for f ∈ L2(R, dx) such that
‖f ‖L2(R,dx) = 1 one has

SL2(R,dx)(f ) + SL2(R,dx)(Ff ) � 0,

whenever the left-hand side has meaning. Note that (R, dx) is not a finite measure space, so
that one or both of the terms on the left-hand side can be meaningless. In fact, Hirschman
conjectured a sharper upper bound, namely log 2 − 1, for the right hand side of the previous
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inequality. However, Beckner in [Be] proved this conjecture. The idea behind Hirschman’s
method for proving the inequality above is to view each side of the HYI ‖Ff ‖p′ � ‖f ‖p

which is valid for p ∈ [1, 2], as a function of p for fixed f ∈ L2(R, dx). It turns out that these
functions are smooth, and then it makes sense to take the derivative at p = 2− on both sides
of the inequality. The point is that, when p = 2, the HYI is in fact an equality, by Plancherel’s
theorem, and so the derivative d

dp

∣∣
p=2− acts as an order-reversing operator giving in this way

a new inequality, ‘the differentiated HYI at p = 2−’. It turns out that this yields Hirschman’s
result. All these ideas were applied in the context of Segal–Bargmann analysis by the second
author ([Snt1]) in the case µ = 0. Following the same kind of ideas, we now establish the
main result of this section.

Theorem 5.2 (Hirschman inequality). Suppose that p and q satisfy

1 � q < 2 and p > 1 +
q

2
.

Let f ∈ L2+ζ (R, dgµ) with ζ > 0 be such that Bµf ∈ L2+ξ (C × Z2, dνµ) for some ξ > 0.
Then the Hirschman entropy inequality

(p−1 − 2−1)SL2(R,dgµ)(f ) � (q−1 − 2−1)SL2(C×Z2,dνµ)(Bµf ) + (log ‖Bµ‖p→q)‖f ‖2
L2(R,dgµ)

(5.4)

holds.

Remark. We comment that the set of functions for which the hypotheses of theorem 5.2 hold
is a dense subspace of L2(R, dgµ). This is shown in the Remark after theorem 6.3.

Proof. We first note that if f = 0 the inequality to prove is trivial, both sides of it being equal
to zero. So we take an arbitrary f satisfying the hypotheses with f �= 0. Observe that the
coefficient of the norm term in (5.4) is non-negative, since ‖Bµ‖p→q � 1. So the term itself
is non-negative. Nevertheless, the remaining two terms (the entropy terms) can be positive,
negative or zero. In fact, even though SL2(R,dgµ)(f ) � 0 (since (R, dgµ) is a probability
measure space), the hypotheses allow the coefficient (p−1 − 2−1) to be positive, negative or
zero. Also, the hypotheses give us that (q−1 − 2−1) > 0, but the entropy SL2(C×Z2,dνµ)(Bµf )

can be positive, negative or zero. (Recall that (C × Z2, dνµ) is a measure space with weight
strictly greater than 1.)

The idea of the proof consists in considering the Hausdorff–Young type inequality
‖Bµ‖ps→qs

� ‖Bµ‖s
p→q we proved above (theorem 5.1), where ps = (sp−1 + (1 − s)2−1)−1

and qs = (sq−1 + (1 − s)2−1)−1, with s ∈ [0, 1]. Observe that these formulae for ps

and qs are of the form T (s) = 2ϑ
(2−ϑ)s+ϑ

, with ϑ = p and ϑ = q, respectively, as in
the discussion previous to the theorem. That is, we begin by considering the inequality
‖Bµf ‖Lqs (C×Z2,dνµ) � As‖f ‖Lps (R,dgµ), where A = ‖Bµ‖p→q . The point here is to note that
when s = 0, this inequality is, in fact, an equality (since the operator Bµ from L2(R, dgµ) to
B2

µ is unitary). Then, by differentiating both sides of it at s = 0+, we get a new inequality

d

ds

∣∣∣∣
s=0+

‖Bµf ‖Lqs (C×Z2,dνµ) � d

ds

∣∣∣∣
s=0+

(
As‖f ‖Lps (R,dgµ)

)
or

d

ds

∣∣∣∣
s=0+

‖Bµf ‖Lqs (C×Z2,dνµ) � (log A)‖f ‖L2(R,dgµ) +
d

ds

∣∣∣∣
s=0+

f ‖Lps (R,dgµ). (5.5)
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Note that according to lemma 5.1, the hypotheses on f and on Bµf guarantee the existence
of the derivatives in this expression. Then we can use formula (5.2) to obtain

d

ds

∣∣∣∣
s=0+

‖f ‖Lps (R,dgµ) = (2−1 − p−1)‖f ‖−1
L2(R,dgµ)

SL2(R,dgµ)(f )

and
d

ds

∣∣∣∣
s=0+

‖Bµf ‖Lqs (C×Z2,dνµ) = (2−1 − q−1)‖Bµf ‖−1
Lqs (C×Z2,dνµ)SL2(C×Z2,dνµ)(Bµf ).

Thus, inequality (5.5) becomes

(2−1 − q−1)‖Bµf ‖−1
L2(C×Z2,dνµ)

SL2(C×Z2,dνµ)(Bµf )

� (log A)‖f ‖L2(R,dgµ) + (2−1 − p−1)‖f ‖−1
L2(R,dgµ)

SL2(R,dgµ)(f ),

and finally, by using the fact ‖Bµf ‖L2(C×Z2,dνµ) = ‖f ‖L2(R,dgµ), we obtain the inequality (5.4).
�

Remark. This proof depends on the fact that Bµ is a unitary operator for p = q = 2 and
λ = 1. We cannot extend this proof to the case p = q = 2 and λ �= 1 by proposition 5.1

6. Logarithmic Sobolev inequalities

Throughout this section the parameter λ � 1 will be assumed.
The term ‘Sobolev inequality’ refers to an estimate of lower order derivatives of a function

in terms of its higher order derivatives. Ever since the work of Sobolev ([Sob]), this kind of
estimate has proven to be very useful in the theory of partial differential equations. (See [L-L],
chapter 8.) An example of a Sobolev inequality for a function f : R

n → C is

Sn‖f ‖2
Lq(Rn,dx) � ‖grad f ‖2

L2(Rn,dx),

where n � 3, q = 2n(n − 2)−1 and Sn a universal constant depending only on n. (See [L-L],
p 156.)

In 1975, Gross ([G]) obtained the inequality∫
R

n

|f (x)|2 log |f (x)| dν(x) − ‖f ‖2
L2(R

n,dν)
log ‖f ‖L2(R

n,dν) �
∫

R
n

|grad f (x)|2 dν(x),

valid for suitable functions f : R
n → C, where dν is a Gaussian measure on R

n. This
inequality has the same flavour of the Sobolev inequality mentioned above, since on both
right-hand sides appears the L2 norm of grad f , and on the left-hand side appears an Lp norm
of the function itself, with some mixed logs in the latter case. Gross refers to this result as a
logarithmic Sobolev inequality, and this type of inequality has been shown since Gross’ work
in a variety of generalizations. In particular, in [Snt1] a logarithmic Sobolev inequality (LSI,
for short) is obtained in the context of Segal–Bargmann analysis. Following the same sort of
ideas, we will obtain in this section an LSI for the µ-deformed Segal–Bargmann space and its
associated transform.

Recall that the two main steps in the development of the theory in the last section were first
to have a Hausdorff–Young type inequality (in order to have an inequality between operator
norms that are smooth functions of the corresponding Lebesgue indices), and second to use
this inequality in order to obtain the Hirschman inequality (by applying the differentiation
technique of Hirschman to the inequality of the first step). We will follow in this section the
analogues of these steps by first proving another Hausdorff–Young type inequality and then
using this inequality to obtain the LSI desired.
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Instead of the Riesz–Thorin interpolation theorem we used to prove the Hausdorff–Young
type inequality in the previous section, we will use here a generalization of it (Stein’s theorem)
which we quote next. Recall that a simple function is a measurable function f having a finite
range R ⊂ C such that f −1(z) is a set of finite measure for every z ∈ R, z �= 0.

Theorem 6.1 (Stein [St]). Let (�j , dνj ) for j = 1, 2 be σ -finite measure spaces. Let T be
a linear transformation which takes simple functions f : �1 → C to measurable functions
Tf : �2 → C. Let pi, qi ∈ [1,∞], i = 0, 1. Then, for s ∈ [0, 1], define ps and qs

by p−1
s = (1 − s)p−1

0 + sp−1
1 and q−1

s = (1 − s)q−1
0 + sq−1

1 . For i = 0, 1, suppose that
ui : �1 → [0,∞) and ki : �2 → [0,∞) are measurable functions with the property that for
all simple functions f : �1 → C there exist finite non-negative constants Ai such that

‖(Tf )ki‖Lqi (�2,dν2) � Ai‖f ui‖Lpi (�1,dν1). (6.1)

For s ∈ [0, 1], define functions us : �1 → [0,∞) and ks : �2 → [0,∞), by
us = u1−s

0 us
1 and ks = k1−s

0 ks
1. Then the transformation T can be extended uniquely to a linear

transformation defined on the space of all f : �1 → C that satisfy ‖f us‖Lps (�1,dν1)
< ∞ in

such a way that for all such f we have

‖(Tf )ks‖Lqs (�2,dν2) � A1−s
0 As

1‖f us‖Lps (�1,dν1). (6.2)

We will need later the following result.

Lemma 6.1. Let 1 � q < 2λ and 0 � s � 1. Let the function κλ,s : C × Z2 → [0,∞) be
defined by

κλ,s(z, 1) =
λ

2µ+3
2 Kµ− 1

2
(λ|z|2)

Kµ− 1
2
(|z|2)

sq−1

,

κλ,s(z,−1) =
λ

2µ+3
2 Kµ+ 1

2
(λ|z|2)

Kµ+ 1
2
(|z|2)

sq−1

.

Then κλ,s ∈ L∞(C × Z2).

Proof. We will prove that the restrictions of κλ,s to each copy of C in C × Z2 are bounded
functions in a neighbourhood of the origin and in a neighbourhood of infinity, from which
the conclusion of the lemma follows. We begin by considering κλ,s(z, 1) in a neighbourhood

of (0, 1). By applying (2.6) we find that if 0 � µ < 1
2 we have that κλ,s(z, 1) ∼= λ

(2µ+1)s

q as

|z| → 0, and if µ > 1
2 we have that κλ,s(z, 1) ∼= λ

2s
q as |z| → 0. This shows that, for µ �= 1

2 ,
the function κλ,s(z, 1) is bounded in a neighbourhood of (0, 1). In the case µ = 1

2 we have
by (2.7) that

κλ,s(z, 1) ∼=
(

λ2 log 2
λ|z|2

log 2
|z|2

)sq−1

.

But the right-hand side of this expression is bounded in a neighbourhood of the origin

since it has the finite limit λ
2s
q as |z| → 0. Again using (2.6) we have that κλ,s(z,−1) ∼= λ

s
q

as |z| → 0 for all µ � 0, which shows that κλ,s(z,−1) is bounded near (0,−1).
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Finally, according to (2.8) we have that both κλ,s(z, 1) and κλ,s(z,−1) are asymptotically
equivalent as |z| → +∞ toλ

2µ+3
2

(
π
2λ

) 1
2 |z|−1 exp(−λ|z|2)(

π
2

) 1
2 |z|−1 exp(−|z|2)

sq−1

= λ
(µ+1)s

q exp

(
1 − λ

q
s|z|2

)
,

which is a bounded function of z, since λ � 1. �

We will prove now a Hausdorff–Young type inequality as we did in theorem 5.1. Recall
that in section 5 we worked with the operator Bµ from Lp(R, dgµ) to Lq(C × Z2, dνµ) with p
and q chosen in such a way that �1 = (p−1, q−1) is admissible. Then we used the Riesz–Thorin
interpolation theorem to conclude that for all pairs

(
p−1

s , q−1
s

) = s�1 + (1− s)�2, 0 � s � 1,
in the line segment connecting �2 = (2−1, 2−1) and �1, the corresponding operator Bµ

from Lps (R, dgµ) to Lqs (C × Z2, dνµ) is bounded and that 1 � ‖Bµ‖ps→qs
� ‖Bµ‖s

p→q

for all s ∈ [0, 1]. Since the operator Bµ from L2(R, dgµ) to L2(C × Z2, dνµ) is isometric
we have that �2 is admissible. Note that the measure dνµ of the spaces Lqs (C × Z2, dνµ) is
independent of the parameter s ∈ [0, 1]. What we will do now will be something like repeating
this story in another setting, using the Stein’s interpolation theorem instead of the Riesz–Thorin
theorem, in such a way that we get the same sort of result: an inequality for the operator norm
of the operators from the Lps spaces to the Lqs spaces, such that when s = 0 this inequality
becomes an equality. The price to be paid has to do with the measure of the Lqs codomain
spaces, which now will depend on the parameter s. The result is the following.

Theorem 6.2 (weighted Hausdorff–Young type inequality). Let p, q, λ be parameters as
in (4.1). For s ∈ [0, 1] let κλ,s : C × Z2 → [0,∞) be the function defined in lemma 6.1, and
ps and qs be defined by ps = ((1− s)2−1 + sp−1)−1 and qs = ((1− s)2−1 + sq−1)−1. Then for
all s ∈ [0, 1], the µ-deformed Segal–Bargmann transform Bµ is a bounded linear map from
Lps (R, dgµ) to Lqs

(
C × Z2, dνs

µ,λ

)
, where

dνs
µ,λ(z, 1) = (κλ,s(z, 1))qs dνe,µ(z), dνs

µ,λ(z,−1) = (κλ,s(z,−1))qs dνo,µ(z).

Moreover, for s ∈ [0, 1] and f ∈ Lps (R, dgµ) we have that

‖Bµf ‖Lqs (C×Z2,dνs
µ,λ)

� ‖Bµ‖s
p→q‖f ‖Lps (R,dgµ). (6.3)

Proof. First let us note that for s = 0 the measure dνs
µ,λ is simply dνµ, while for s = 1 we

have that

dν1
µ,λ(z, 1) = (κλ,1(z, 1))q dνe,µ(z)

=
λ

2µ+3
2 Kµ− 1

2
(λ|z|2)

Kµ− 1
2
(|z|2)

2
1
2 −µ

π�
(
µ + 1

2

)Kµ− 1
2
(|z|2)|z|2µ+1 dx dy

= λ
2

1
2 −µ

π�
(
µ + 1

2

)Kµ− 1
2
(λ|z|2)∣∣λ 1

2 z
∣∣2µ+1

dx dy

= dνµ,λ(z, 1).

Similarly we have dν1
µ,λ (z,−1) = dνµ,λ (z,−1). That is, the measure dν1

µ,λ is dνµ,λ.
With the notation of Stein’s theorem, we take (�1, dν1) = (R, dgµ) and (�2, dν2) =

(C × Z2, dνµ). Take also p0 = q0 = 2, p1 = p, q1 = q, u0, u1 : R → [0,∞), u0(t) =
u1(t) ≡ 1, and k0 : C×Z2 → [0,∞), k0(z, j) ≡ 1, j = −1, 1. Define k1 : C×Z2 → [0,∞)

as k1 := κλ,1, where κλ,1 is defined in lemma 6.1.
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For s ∈ [0, 1], the function us : R → [0,∞) in Stein’s theorem is us = u1−s
0 us

1 = 1, and
the function ks : C × Z2 → [0,∞) in Stein’s theorem is ks = k1−s

0 ks
1 = ks

1 = κλ,s , where κλ,s

is the function described in lemma 6.1.
Observe that

‖(Bµf )ks‖Lqs (C×Z2,dνµ) = ‖Bµf ‖Lqs (C×Z2,dνs
µ,λ)

, (6.4)

since

‖(Bµf )ks‖qs

Lqs (C×Z2,dνµ)

=
∫

C

|(Be,µf )(z)|qs (κλ,s(z, 1))qs dνe,µ(z)

+
∫

C

|(Bo,µf )(z)|qs (κλ,s(z,−1))qs dνo,µ(z)

=
∫

C

|(Be,µf )(z)|qs dνs
µ,λ(z, 1) +

∫
C

|(Bo,µf )(z)|qs dνs
µ,λ(z,−1)

= ‖Bµf ‖qs

Lqs (C×Z2,dνs
µ,λ)

.

For s = 0, we have

‖(Bµf )k0‖L2(C×Z2,dνµ) = ‖Bµf ‖L2(C×Z2,dνµ) = ‖f ‖L2(R,dgµ).

Here the first equality is (6.4) and the second one is simply the fact that the µ-deformed
Segal–Bargmann transform Bµ from L2(R, dgµ) to L2(C × Z2, dνµ) is an isometry. That is,
the hypothesis (6.1) of Stein’s theorem is satisfied for i = 0 with A0 = 1.

For s = 1 we have

‖(Bµf )k1‖Lq(C×Z2,dνµ) = ‖Bµf ‖Lq(C×Z2,dνµ,λ) � A1‖f ‖Lp(R,dgµ).

Here the first equality is again (6.4) and the second one is justified by the fact that Bµ

from Lp(R, dgµ) to Lq(C×Z2, dνµ,λ) is bounded, by theorem 4.1. Then, the hypothesis (6.1)
of Stein’s theorem is satisfied for i = 1 with A1 = ‖Bµ‖p→q .

Thus, Stein’s theorem allows us to conclude that the operator Bµ from Lps (R, dgµ) to
Lqs

(
C × Z2, dνs

µ,λ

)
is bounded and that

‖Bµf ‖Lqs (C×Z2,dνs
µ,λ)

� As
1‖f ‖Lps (R,dgµ),

as we wanted. �

The log-Sobolev inequality proved in [Snt1] involves the term 〈f,Nf 〉L2(R,dg), called
the Dirichlet energy (in the space L2(R, dg)), which is the quadratic form associated
with the number (or energy) operator N. This operator is defined as N = a∗a, where a∗

and a are the creation and annihilation operators, respectively, acting in the ground state
representation L2(R, dg). The operators a∗ and a can be defined by their action on the elements
ζn(t) = 2− n

2 (n!)−
1
2 Hn(t), n = 0, 1, 2, . . . (where Hn(t) is the nth Hermite polynomial),

which form an orthonormal basis of L2(R, dg). The definitions are a∗ζn = (n + 1)
1
2 ζn+1 and

aζn = n
1
2 ζn−1, where n = 0, 1, 2, . . . , and one defines ζ−1 = 0. It turns out that a∗ is the

adjoint of a (with adequate definitions of their domains, which we do not give here). Observe
that Nζn = nζn, so ζn is an eigenvector of N and n is the corresponding eigenvalue. This
justifies the name ‘number operator’ for N. Observe also that

〈f,Nf 〉L2(R,dg) = 〈af, af 〉L2(R,dg) = ‖af ‖2
L2(R,dg) = 1

2‖f ′‖2
L2(R,dg).

That is, the Dirichlet energy is, up to a constant, the norm (in the space L2(R, dg)) of the
derivative of the function f (belonging to the domain of N), which is the Dirichlet form of f .
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Note that this is one of the ingredients of the Sobolev inequalities mentioned at the beginning
of this section.

The Segal–Bargmann transform B : L2(R, dg) → B2 intertwines the action of a∗ and a for
the domain and codomain spaces in the sense that Ba∗B−1 and BaB−1 are the corresponding
creation and annihilation operators in the Segal–Bargmann space B2. We will continue
denoting these operators as a∗ and a (acting on B2). It turns out that (a∗f )(z) = zf (z), and
(af )(z) = f ′(z), where f ′ is the complex derivative of the holomorphic function f . Observe
that since B is unitary we have that 〈f,Nf 〉L2(R,dg) = 〈Bf, ÑBf 〉B2, where Ñ = BNB−1 is
the number operator in B2. That is, the Segal–Bargmann transform B preserves the Dirichlet
energy (one says simply that ‘B preserves energy’).

For µ > − 1
2 , the µ-deformed generalizations of the results above began to be considered

in [Ros1], [Ros2] and [Marr], where the µ-deformed creation a∗
µ and annihilation aµ operators

in the µ-deformed quantum configuration space L2(R, |t |2µ dt) are defined. These definitions
are given in terms of the µ-deformed position operator (Qµf )(t) = tf (t) and the µ-deformed
momentum operator (Pµf )(t) = −i(Dµf )(t), where (Dµf )(t) := f ′(t) + µ

t
(f (t)− f (−t)).

We mention in passing that Dµ, which is a µ-deformation of the derivative, is a special case
of a more general class of operators called Dunkl operators (see [Ros]). The definitions
of a∗

µ and aµ are a∗
µ = 2− 1

2 (Qµ − iPµ) and aµ = 2− 1
2 (Qµ + iPµ). The corresponding

µ-deformed creation and annihilation operators in L2(R, dgµ) can be defined by their
action on the polynomials ζ

µ
n (t) = 2− n

2 (n!)−1(γµ(n))
1
2 H

µ
n (t), n = 0, 1, 2, . . . , (where

H
µ
n (t) is the µ-deformed Hermite polynomial of degree n; see section 3), which form an

orthonormal basis of L2(R, dgµ). The definitions are a∗
µζ

µ
n = (n + 1 + 2µθ(n + 1))

1
2 ζ

µ

n+1 and

aµζ
µ
n = (n+2µθ(n))

1
2 ζ

µ

n−1, where one defines ζ
µ

−1 = 0. By considering the orthonormal basis{
ξ

µ
n

}∞
n=0 of the µ-deformed Segal–Bargmann space B2

µ, one can define the Segal–Bargmann
transform Bµ : L2(R, dgµ) → B2

µ as B
(
ζ

µ
n

) = ξ
µ
n , n = 0, 1, 2, . . . . From this definition it

is clear that Bµ is a unitary onto operator. It is easy to see that the creation and annihilation
operators on B2

µ are (a∗
µf )(z) = zf (z) and aµf = D̃µf , respectively. Here D̃µ acts on

holomorphic functions f (z) as D̃µf (z) := f ′(z)+ µ

z
(f (z)−f (−z)), where f ′ is the complex

derivative of f . The µ-deformed number operator on B2
µ is Ñµ = a∗

µaµ, and one easily checks
that Ñµξ

µ
n = (n + 2µθ(n))ξ

µ
n , n = 0, 1, 2, . . . .

In [A-S.1] a µ-deformed energy Eµ is introduced for functions f ∈ B2
µ, which appears

as a term in a reverse log-Sobolev inequality proved there. The definition is

Eµ(f ) = Ee,µ(fe) + Eo,µ(fo), (6.5)

where fe and fo are the even and odd parts of f , respectively, and

Ee,µ(fe) =
∫

C

|fe(z)|2|z|2 dνe,µ(z),

Eo,µ(fo) =
∫

C

|fo(z)|2|z|2 dνo,µ(z).

When µ = 0 we have that dνe,0 = dνo,0 = dνGauss and (6.5) becomes

E0(f ) =
∫

C

|fe(z)|2|z|2 dνGauss(z) +
∫

C

|fo(z)|2|z|2 dνGauss(z)

=
∫

C

|f (z)|2|z|2 dνGauss(z).

(In the last equality we used that zfe(z) ∈ B2
o, zfo(z) ∈ B2

e , and that B2
o and B2

e are
orthogonal subspaces of B2.)
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In [Bar] it is proved that∫
C

|f (z)|2|z|2 dνGauss(z) = ‖f ‖2
B2 + 〈f, Ñf 〉B2 , (6.6)

where f ∈ B2. This result (Bargmann identity) shows that in the case µ = 0 the µ-deformed
energy defined above is related with the Dirichlet energy 〈f, Ñf 〉B2 for f ∈ B2. The
µ-deformed number operator Nµ acting in B2

µ and its corresponding quadratic form
〈f,Nµf 〉B2

µ
, which can be identified as a µ-deformed Dirichlet form, seem to have been

introduced in [A-S.1]. The relation of this Dirichlet energy and the µ-deformed energy Eµ(f )

is studied in [A-S.2].
In the log-Sobolev inequality we will prove in this section there appears a new

mathematical object that it is natural to relate with the energy. We will call it dilation
energy, and its definition is the following.

Definition 6.1. The dilation energy of an even function f ∈ B2
e,µ is defined by

Ee,µ,λ(f ) =
∫

C

|f (z)|2 log

(
Kµ− 1

2
(|z|2)

Kµ− 1
2
(λ|z|2)

)
dνe,µ(z).

The dilation energy of an odd function f ∈ B2
o,µ is defined by

Eo,µ,λ(f ) =
∫

C

|f (z)|2 log

(
Kµ+ 1

2
(|z|2)

Kµ+ 1
2
(λ|z|2)

)
dνo,µ(z).

The dilation energy of a function f ∈ B2
µ is defined by

Eµ,λ(f ) = Ee,µ,λ(fe) + Eo,µ,λ (fo) . (6.7)

Observe that the fact that λ � 1 and the decreasing property of Kα(x) for x ∈ R
+ imply

that log Kα(|z|2)
Kα(λ|z|2) � 0, so we have that Eµ,λ(f ) � 0.

When µ = 0 we can use (2.5) to obtain

E0,λ(f ) =
∫

C

(
|fe(z)|2 log

(
K− 1

2
(|z|2)

K− 1
2
(λ|z|2)

)
+ |fo(z)|2 log

(
K 1

2
(|z|2)

K 1
2
(λ|z|2)

))
dνGauss(z)

=
∫

C

(|fe(z)|2 + |fo(z)|2) log

 (
π

2|z|2
) 1

2 exp(−|z|2)(
π

2λ|z|2
) 1

2 exp(−λ|z|2)

 dνGauss(z)

=
∫

C

(|fe(z)|2 + |fo(z)|2)
(
log λ

1
2 + (λ − 1)|z|2)dνGauss(z)

= (
log λ

1
2
)‖f ‖2

B2 + (λ − 1)

(∫
C

|f (z)|2|z|2 dνGauss(z)

)
.

By using the Bargmann identity (6.6), we can write

E0,λ(f ) = (
log λ

1
2 + λ − 1

)‖f ‖2
B2 + (λ − 1)〈f, Ñf 〉B2 ,

which shows that, in the case µ = 0, the dilation energy Eµ,λ(f ) is related with the Dirichlet
energy 〈f, Ñf 〉B2 , where f ∈ B2.

In fact, for any µ > 0, the dilation energy Eµ,λ is related with the µ-deformed energy
Eµ, as we will see now.
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We will use the following formula for Kν(x), valid for x ∈ R
+ and ν > − 1

2 (see [Wat],
p 207.):

Kν(x) =
( π

2x

) 1
2
e−x

(
n−1∑
k=0

�
(
ν + 1

2 + k
)

k!�
(
ν + 1

2 − k
)
(2x)k

+
η(x)�

(
ν + 1

2 + n
)

n!�
(
ν + 1

2 − n
)
(2x)n

)
. (6.8)

Here η(x) is a function of x, 0 � η(x) � 1, and the non-negative integer n is chosen such
that n − 1 < ν − 1

2 � n.
From (6.8) we obtain that

Kµ− 1
2
(|z|2)

Kµ− 1
2
(λ|z|2) = λ

1
2 exp((λ − 1)|z|2)S(z, µ, λ),

where for z �= 0

S(z, µ, λ) =
∑m−1

k=0
�(µ+k)

k!�(µ−k)(2|z|2)k + η(|z|2) �(µ+m)

m!�(µ−m)(2|z|2)m∑m−1
k=0

�(µ+k)

k!�(µ−k)(2λ|z|2)k + η(λ|z|2) �(µ+m)

m!�(µ−m)(2λ|z|2)m
,

η(|z|2), η(λ|z|2) ∈ [0, 1], and m ∈ N ∪ {0} is such that m < µ � m + 1.
Similarly we have that

Kµ+ 1
2
(|z|2)

Kµ+ 1
2
(λ|z|2) = λ

1
2 exp((λ − 1)|z|2)T (z, µ, λ),

where for z �= 0

T (z, µ, λ) =
∑n−1

k=0
�(µ+1+k)

k!�(µ+1−k)(2|z|2)k + η(|z|2) �(µ+1+n)

n!�(µ+1−n)(2|z|2)n∑n−1
k=0

�(µ+1+k)

k!�(µ+1−k)(2λ|z|2)k + η(λ|z|2) �(µ+1+n)

n!�(µ+1−n)(2λ|z|2)n
,

η(|z|2), η(λ|z|2) ∈ [0, 1], and n ∈ N ∪ {0} is such that n − 1 < µ � n.
Thus, the dilation energy (6.7) can be written as

Eµ,λ(f ) =
∫

C

|fe(z)|2 log
(
λ

1
2 exp((λ − 1)|z|2)S(z, µ, λ)

)
dνe,µ(z)

+
∫

C

|fo(z)|2 log
(
λ

1
2 exp((λ − 1)|z|2)T (z, µ, λ)

)
dνo,µ(z)

= (
log λ

1
2
)‖f ‖2

B2
µ

+ (λ − 1)

(∫
C

|fe(z)|2|z|2 dνe,µ(z) +
∫

C

|fo(z)|2|z|2 dνo,µ(z)

)
+

∫
C

|fe(z)|2(log S(z, µ, λ)) dνe,µ(z) +
∫

C

|fo(z)|2(log T (z, µ, λ)) dνo,µ(z).

That is, for any µ � 0 and λ � 1, we have that the dilation energy Eµ,λ(f ) of a function
f ∈ B2

µ is related with the µ-deformed energy Eµ(f ) by

Eµ,λ(f ) = (
log λ

1
2
)‖f ‖2

B2
µ

+ (λ − 1)Eµ(f ) + ρ(µ, λ, f ),

where

ρ(µ, λ, f ) =
∫

C

|fe(z)|2(log S(z, µ, λ)) dνe,µ(z) +
∫

C

|fo(z)|2(log T (z, µ, λ)) dνo,µ(z).

By examining the last factor in (6.8) we see that S(z, µ, λ) → 1 as |z| → ∞. This also
follows from (2.8). Similarly, T (z, µ, λ) → 1 as |z| → ∞. Moreover, S(z, µ, λ) �= 0 for all
z �= 0, since otherwise Kµ−1/2(|z|2) = 0, which is known to be false. Similarly, T (z, µ, λ) �= 0
for all z �= 0. It is then not hard to see that there exist constants 0 < Aµ,λ < Bµ,λ such that

Aµ,λ‖f ‖2
B2

µ
� ρ(µ, λ, f ) � Bµ,λ‖f ‖2

B2
µ
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for all f ∈ B2
µ. It follows for λ > 1 that the quadratic forms Eµ,λ(f ) and Eµ(f ) in f ∈ B2

µ

are equivalent, modulo terms that are multiples of ‖f ‖2
B2

µ
. Of course, for λ = 1 we have

Eµ,λ(f ) = 0 for all f ∈ B2
µ.

Now we go to the main result of this section.

Theorem 6.3 (Logarithmic Sobolev Inequalities). Let p, q be such that

1 � q < 2λ and p > 1 +
q

2λ
.

Let f ∈ L2+ζ (R, dgµ), where ζ > 0, be such that Bµf ∈ L2+ξ (C × Z2, dνµ), where ξ > 0.
Then we have the logarithmic Sobolev inequality

(2−1 − q−1)SL2(C×Z2,dνµ)(Bµf ) − (2−1 − p−1)SL2(R,dgµ)(f )

� 1

q
Eµ,λ(Bµf ) +

(
log ‖Bµ‖p→q − 2µ + 3

2q
log λ

)
‖f ‖2

L2(R,dgµ). (6.9)

Remark. Consider the subspace S of L2(R, dgµ) consisting of all f such that f ∈
L2+ζ (R, dgµ) for some ζ > 0 and Bµf ∈ L2+ξ (C × Z2, dνµ) for some ξ > 0. Then S
is dense in L2(R, dgµ). To see this, first observe that the polynomials ζ

µ
n are in L2+α(R, dgµ)

for every α > 0, since the density of the measure contains a Gaussian factor which dominates
the integrand near infinity. Now Bµζ

µ
n = ξ

µ
n as we already know. But ξ

µ
n is a monomial and

so ξ
µ
n ∈ L2+β(C × Z2, dνµ) for every β > 0, since again the measure goes to zero fast enough

to guarantee convergence of the integral. Therefore, ζ
µ
n ∈ S for every integer n � 0. But

the set of finite linear combinations of the ζ
µ
n forms a subspace of S which itself is dense in

L2(R, dgµ), since the ζ
µ
n are an orthonormal basis of L2(R, dgµ). And this shows that S is

dense. Consequently, theorems 5.2 and 6.3 hold for functions in a dense subspace, namely S,
of L2(R, dgµ). We fully expect that the results of these two theorems hold for all functions in
L2(R, dgµ).

Proof of theorem 6.3. We will use the inequality (6.3), which combined with (6.4) tells us
that for s ∈ [0, 1] we have that

‖(Bµf )ks‖Lqs (C×Z2,dνµ) � As‖f ‖Lps (R,dgµ), (6.10)

where A = ‖Bµ‖p→q and f is as in the hypotheses of the theorem. Also ps and qs are
as in theorem 6.1. Observe that when s = 0, (6.10) becomes an equality, so we can
differentiate (6.10) at s = 0+ to obtain the new inequality

d

ds

∣∣∣∣
s=0+

‖(Bµf )ks‖Lqs (C×Z2,dνµ) � d

ds

∣∣∣∣
s=0+

(As‖f ‖Lps (R,dgµ))

or

d

ds

∣∣∣∣
s=0+

‖(Bµf )ks‖Lqs (C×Z2,dνµ) � (log A)‖f ‖L2(R,dgµ) +
d

ds

∣∣∣∣
s=0+

‖f ‖Lps (R,dgµ). (6.11)

The hypothesis on f allows us to use lemma 5.1 and obtain

d

ds

∣∣∣∣
s=0+

‖f ‖Lps (R,dgµ) = (2−1 − p−1)‖f ‖−1
L2(R,dgµ)

SL2(R,dgµ)(f ).

The hypothesis on Bµf and lemma 6.1 imply (Bµf )ks ∈ L2+ξ (C × Z2, dνµ) for
s ∈ [0, 1], and so we can also use lemma 5.1 to obtain the derivative of the left-hand side
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of (6.11). Observe that in this case the function F of lemma 5.1 is not a constant function.
Thus, in this case formula (5.3) gives us

d

ds

∣∣∣∣
s=0+

‖(Bµf )ks‖Lqs (C×Z2,dνµ) = ‖Bµf ‖−1
L2(C×Z2,dνµ)

(2−1 − q−1)SL2(C×Z2,dνµ)(Bµf )

+ ‖Bµf ‖−1
L2(C×Z2,dνµ)

Re〈F ′(0), (sgn Bµf )|Bµf |〉,
where the derivative F ′(0) is

F ′(0) = (Bµf )
d

ds

∣∣∣∣
s=0+

ks
1 = (Bµf ) log k1,

and so

Re〈F ′(0), (sgn Bµf )|Bµf |〉 = Re
∫

C×Z2

F ′(0)(sgn (Bµf ))|Bµf |dνµ

= Re
∫

C×Z2

(log k1)(Bµf )Bµf dνµ

=
∫

C×Z2

(log k1)|Bµf |2 dνµ.

Explicitly we have that

Re〈F ′(0), (sgn Bµf )|Bµf |〉 =
∫

C

log

λ
2µ+3

2 Kµ− 1
2
(λ|z|2)

Kµ− 1
2
(|z|2)

q−1

|(Be,µf )(z)|2 dνe,µ(z)

+
∫

C

log

λ
2µ+3

2 Kµ+ 1
2
(λ|z|2)

Kµ+ 1
2
(|z|2)

q−1

|(Bo,µf )(z)|2 dνo,µ(z)

= 2µ + 3

2q
(log λ)‖Bµf ‖2

L2(C×Z2,dνµ) − 1

q
Eµ,λ(Bµf ).

Thus we have that

d

ds

∣∣∣∣
s=0+

‖(Bµf )ks‖Lqs (C×Z2,dνµ)

= ‖Bµf ‖−1
L2(C×Z2,dνµ)

(
(2−1 − q−1)SL2(C×Z2,dνµ)(Bµf )

+ 2µ+3
2q

(log λ)‖Bµf ‖2
L2(C×Z2,dνµ)

− 1
q
Eµ,λ(Bµf )

)
.

So the inequality (6.11) becomes

‖Bµf ‖−1
L2(C×Z2,dνµ)

(
(2−1 − q−1)SL2(C×Z2,dνµ)(Bµf )

+ 2µ+3
2q

(log λ)‖Bµf ‖2
L2(C×Z2,dνµ)

− 1
q
Eµ,λ(Bµf )

)
� (log A)‖f ‖L2(R,dgµ) + (2−1 − p−1)‖f ‖−1

L2(R,dgµ)
SL2(R,dgµ)(f ),

and finally, by using that ‖Bµf ‖L2(C×Z2,dνµ) = ‖f ‖L2(R,dgµ), we get

(2−1 − q−1)SL2(C×Z2,dνµ)(Bµf ) − (2−1 − p−1)SL2(R,dgµ)(f ) � 1

q
Eµ,λ(Bµf )

+

(
log‖Bµ‖p→q − 2µ + 3

2q
log λ

)
‖f ‖2

L2(R,dgµ),

which is (6.9). �
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Observe that, in the limiting case λ = 1, we have that Eµ,λ(Bµf ) = 0, and then the
log-Sobolev inequality (6.9) becomes(

1

2
− 1

q

)
SL2(C×Z2,dνµ)(Bµf ) �

(
1

2
− 1

p

)
SL2(R,dgµ)(f ) + (log‖Bµ‖p→q)‖f ‖2

L2(R,dgµ),

which is the Hirschman inequality (5.4) we proved in the previous section.
In the case µ = 0 the inequality (6.9) becomes

(2−1 − q−1)SL2(C,dνGauss)(Bf ) − (2−1 − p−1)SL2(R,dg)(f ) � 1

q
E0,λ(Bf )

+

(
log ‖B‖p→q − 3

2q
log λ

)
‖f ‖2

L2(R,dg)

or

(2−1 − q−1)SL2(C,dνGauss)(Bf ) − (2−1 − p−1)SL2(R,dg)(f )

� 1

q

((
log λ

1
2 + λ − 1

)‖Bf ‖2
B2 + (λ − 1)〈Bf, ÑBf 〉B2

)
+

(
log‖B‖p→q − 3

2q
log λ

)
‖f ‖2

L2(R,dg).

By using that ‖Bf ‖B2 = ‖f ‖2
L2(R,dg)

and 〈Bf, ÑBf 〉B2 = 〈f,Nf 〉L2(R,dg), we can write
the last expression as

(2−1 − q−1)SL2(C,dνGauss)(Bf ) − (2−1 − p−1)SL2(R,dg)(f )

�
(

− 1

q
log λ +

λ − 1

q
+ log‖B‖p→q

)
‖f ‖2

L2(R,dg) +
λ − 1

q
〈f,Nf 〉L2(R,dg),

which is the log-Sobolev inequality in [Snt1], up to some identifications in the coefficients
of the terms of the right-hand side (for example, the weight a that appears in [Snt1] can be
identified with λ − 1).

7. Concluding remarks

In this section we present some of the lines along which this work can be continued.

(1) The µ-deformed theory presented in [Ros1], [Ros2] and [Marr] is valid for µ > − 1
2 .

Nevertheless, the inequality (2.2) was proved only for non-negative values of µ, and this
inequality is fundamental in the proof of the theorem 4.1, and then in the proofs of results
of the remaining sections. We leave as open questions if these results (sections 4, 5
and 6) are also valid for − 1

2 < µ < 0.

(2) Theorem 4.1 establishes that if p ∈ (1,∞], q ∈ [1,∞), and λ > 1
2 are such that the

inequalities p > 1 + q

2λ
and 1 � q < 2λ hold, then the µ-deformed Segal–Bargmann

transform Bµ is a bounded operator from Lp(R, dgµ) to Bq

µ,λ. For p, q, and λ not
satisfying the above mentioned inequalities we know little about the boundedness of Bµ.
We suspect that if either of the inequalities q > 2λ or p < 1 + q

2λ
holds, then Bµ is not

bounded (for the corresponding values of p, q and λ), since this is the case when µ = 0
and λ = 1 (see corollary 7.2 in [Snt1]), but in the general situation we consider in this
work this remains as an open question.
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